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1. INTRODUCTION

The result. Let xl , . . .* x r be r points in Rd and A be

d A
a class of Borel sets in Rd. Denote by A (xl,...,Xr) the

number of distinct sets in {{Xl,...,Xrlfl A, A cA). Define

mA(r) = max A
x 1 ,9. . . , x r ER d A x ' '' r )

Vapnik and Chervonenkis (1971) showed that either mA (r) = 2 r

for any positive integer r or mA(r) < rS+l, where s is the

smallest k such that mA(k)$2k. A class of sets A for which

the latter case holds will be called a V-C class with index s.

d
Suppose that u is a probability measure on Rd . Let

XX,. be a sequence of i.i.d. random vectors with common

distribution U, and Un be the empirical distribution of

Xl,...,X n . Denote a "distance" between u n and U by

Dn (A,.) = Suplu (A) - u(A)I.
AcA

Throughout this paper we assume that D (A,A),SUpln (A)- (A)ln sp'n(Au 1 2n()

and sup n (A) are all random variables. We shall prove the

AcA n

following

Theorem 1. Let A be a V-C class with index s such that

Sup 1 (A) < 6 <_ 1/8. (1)
AcA

Then for any c > 0 we have

P{Dn (Au)> } < 5(2n)Sexp(-n 2/(916+4c)) (2)

+ 7(2n)Sexp(-an/68)

+ 22 +Sn1 +2 s exp(-8n/8),
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provided n > max (12o/c2, 68(1+sXlog 2)18).

The proof of (2) is based on an important inequality proved by Devroye and

Wagner (1980).
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2. HISTORICAL NOTES

A few remarks concerning this inequality are in order. In 1971, Vapnik and

* Chervonenkis proved that, for any c > 0

P{Dn (A,U) >c < 4exp(-ne2/8) B (X , ..., X2n) (3)

This inequality is quite general since no restrictions such as (1) are imposed.

In using this inequality, an extimate of m A(n) must be given, see, for example,

Gaenssler and Stute (1979), Wenocur and Dudley (1981).

The weakness of (3) lies in the fact that, in many applications e = cn+O as

n-).. In this case ncn may not tend to - or tend to - very slowly. For this reason,€n

the inequality proved by Devroye and Wagner (1980) is sometimes more useful. They

proved that, if suPA U(A) < 6 < , then for any c > 0

P{Dn (Au) > e} < 4mA (2n)exp(-nc 2/(646+4c))

(4)
+ 2P{SuPA p2n(A) > 25

for n > 86/c 2 . If we further have

Sup Sup jIx-ylI < p <

AcA x,ycA

and

Sup U(S(x,p)) < 6 < , (5)

xcRd- _

here I Is the L or L. norm in Rd, and S(x,p) Is the closed ball with radius p
b2

a ..
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4

centered at x, then

P{Dn (AU)>cl < 4mA(2n)exp(-nc2 /(646+4c))
(6)

+ 4n exp(-n6/1O)

for n > max (1/6,86/c 2).

This inequality is most useful when A is the class of balls with the same

diameter (norm L2 or ). Otherwise 6 may be much larger than SuPA y(A), and (6)

. gives no improvement over (3). Chen and Zhao (1984) made an essential improvement

*in the one-dimensional case:

Let A be a class of intervals in R1  satisfying Sup u(I) < 6 < .
IcA

* Then there exists positive absolute constants C,Cl,...,C4 such that for any e > 0

P{Suplin(I) - U(i) > C}
IA (7)

C1¢1-/6-n exp(-C 2nc /6) + C3 exp(-C 4ne),

provided n/log n > C0/c.

The proof of (7) relies on a result concerning the strong approximation to

Brownian bridge of the empirical process on R1 . The argument fails in the general

case d > 1. The inequality (2), to be proved in the next section, gives a

satisfactory generalization to the case d > 1.
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r 3. PROOF OF THEOREM 1

Set
2-1 +22+ 2-

6 = + , j=1,29 ... ,r.

where r will be chosen later. Then

6< 81 < a2 < ... < ar < 28<

When n > 128/e2 we have n > 8 1/e2. From (4), the definition of V-C class

and the fact that

SUP A p(A) . 1 '

it follows that

P{Dn(A.U)>e} < 4{(2n)S+ll exp(-nc 2/(646+4E))

+ 2P{SuPA u2n(A) > 281}

5(2n)Sexp(-ne 2/(64Vfa+4c)) + 2P{D2 n(A,u) > l}

provided n > 126/c2.

When 6n > 68(1+s)log 2, we have 2j' 1n > 88j/a_ 1 for j = 2,3,...r. As before,

from (4) and SuPA U(A) < 82 < 4, it follows that

P{Dn (A,u) > e} < 5(2n)Sexp(-ne2/(916+4e))

+(2.5X2-2n)Sexp(-2n5 2/(642+46
1 2+41)

+ 22 P{D 22n(A,) > a2},

. °. ..:;;... ..... J ' - ;; . / ."' ' ' :' ; : ¢'2€ .'' '"2,"'"n,



6

provided n2> max(68(1+s)log2/8, 128/c 2

Using (4 ) and SupA 1 (A) < repeatedly, we obtain

P{D n (A,.u) > 0i < 5(2n)sexp(-ne 2/(916+4c))

(8)

+ 2r P{D 2r n >6) In+j2n+j3n

provided n > max(68(1+s)log2/6, 126/c )2

It is easy to see that

2 a~t2jag j=1,..., r-1. (9)

* Hence it follows from (8), (9) and 21+ < en' 6  that

5(2n)s (2 1+s) j exp(-2jan/68)

5(2n)5  ;. exp(-Jasn/68)

=5(2fl)se.n6 (l-e-6n/6
8  1

<7(2n)sexp(-.5n/68),

where s > 1 is invoked.

When 8n > 68(1+s)log2, we have 2 r n6  > 2. By (3)

I.r

ell% 
**P. % \~ *.** * '. , . . * * . . . -el,. 

A .~



7

22n 2 (2 n

-we have n 6r >2, n6r >v/T and nd r > 26. By (11) we have

i .n: 2n((2n 2 )s+) exp(-n 2 6 2/16) (12)

<4n(2n 2 )exp(-6nl8).

* Formula (2) follows from (8), (10) and (12). The theorem is proved.
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4. APPLICATIONS

Theorem 1 has some applications in strong convergence problems involving

the uniform deviation between frequencies and probabilities of a class of events.

As an example, we consider the nearest neighbor (NN) density estimates proposed

by Loftsgarden and Quesenberry (1965). Suppose that X is a Rd-valued random vectors

with distribution U and unknown density function f. The so called NN estimate of

f(x) has the form

f n(x) = k/{n(2a n(x))d3, x = (x(1),...,x(d))cRd, (13)

where k = kn _< n is a positive integer chosen in advance, an (x) is the smallest

a > 0 such that the cube [x-a,x+a] = 1 x(i)-a,x(i)+a] contains at least k sample

points. As an application of Theorem 1, we prove 3 theorem about the convergenre

rate of Sup d Ifn(x) -flx}
xE6R

In the sequel' we use c, a, c1 , c2, ... for some positive constants independent

of n and x. For x= (x(1) ,x(dyRd v = (y1) ,y(d) )eRd, writeC ,... ,_,...writ

f(x)(y-x) = Zi=Id jT (yii).xii)), and take fly - xli = maxt<i<dy(l) - x(i)
ax

We say that the density function f belongs to X-class for some x(O,2], if Xe(0,1] and

Ifty) - f(x)J I clly-xlj x for any x,ycR d , or Xc(1,2] and, f are bounded and

If(y) - f(x) - f (x)(y-x)I <Cjy- xllX

for any x,ycR d . We have

Theorem 2. Suppose that f belongs to X-class for some xc(0,2]. Take k = o(n) and

ki n > ,(l+,n )(d+')/(d+3x) (14)
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" where a > 0 is any given constant. Then

/kn If (x) I}Wl < C a.s. (15)lmsup{(nl/k)X/(d+ ')Suplfn(X)-t(x}<_ as.15

n-). x

To prove this theorem, we need the following lemma. In the sequel, U n denotes

the empirical measure of Xls...Xn' Besides, a cube of the form [x-a,x+a] is

called a regular cube.

Lemma 3. Let A be a class of regular cubes satisfying the measurability

conditions mentioned in paragraph 1 and the condition

SuPACA U(A) < k/n < 1/8.

.- Take k = o(n) and

k/n> (3 (~ln)1/(1+2r), (16)

where r > 0 and 8 > 0 is any given constant. Then

lim sup{(j) suplun(A) - u(A)I} < C a.s.

n-)-- AcA n

Notice that A is a V-C class, one can obtain Lemma 3 from Theorem 1 immedi-

ately. The proof is omitted.

Proof of Theorem 2. Take k = o(n) and

k/n > 0(logn/n) (d+x)/(d+3x)

Put

= 1 k /d)
Vn / (/n)

qn =
2Vn e el2( k/n)X/

(d+x)
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Bn = {x: f(x) > Vn)

where eI, 62E(0,1) will be chosen later.

Let P(x,a) and P (x,a) be the probability measure and empirical measure of

[x-a,x+a] respectively. Put M = max(SuP f(x),l). We have
wSup
PX{Bnlfn(x)- f(x)1 > qn} < In + n(17)

where

In =P(U {fn(x) > f(x) + q I).
nn

(18)

Jn =P(U xB {fn(x) < f(x) - qn}).
n

Thus

in <P(UxeB {an(x) < b n(X)), (19)
n

*where

2bn(x) = n' (l+q n/f(x))'ll/d"

. Fix xeB n = {x: f(x) > V 1. Take 2 < 1/8, then qn/f(x) < e2 < 1/8. Noticing

1/(1+t) < 1 -7t/8 for 0 < t < 1/8, we have

2bn (x) / (l-7qn/8f(x))} /d
2b () < nf~x) (7n )

< (k/nf(x)) I/d

*" It follows that

rX+b (x)

P(Xbn(X))= xbx f(t)dt

n
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(2b n(x)) df( x) + C2(2bn(x))d+x

= (2b n(x))d f(x)[1 + C2(2bn(x)) X/f(x)]

-(1- /f(x),XV+CI )'/df(x))
-n 9 2 -n-f x

7 q /f(x) + C(kx)) /f(x)).

(x+d)/d 3 k. x/d
Fix e29 take e1 small enough such that C2e1  < 3 629 then 2  k )A/d

2_ 2 /d/ /(k/n e-le k/n)X/(d+ X) = q. It follows that

u(xbn(x)) < *(1- qn/f(x)) < k/n,

and

k
- i(Xbn(x)) > kqn/(2nM).

Hence, by (19) and Theorem 1, we have

In< P{Sup (Un (x,b n(x)) - (xbn (x)) > kqn/(2nM)l
XCBn

2C CL n(kq n/2nM)
2

C5n {exp(- nkq/) + exp(-k/68)}
5 91k/n+Zkq n/fl-M

where a is a constant depending only on d. In view of (14), we have for large n

I n _.C5n=fexp(-ele M 2B1+2x/(d+x )logn/400)

+ exp(-k/68)).

Take e small enough, we have

.. ,.. . *• .. . ." .. . b . .. ~ .,-." . .'-",'.. .. . . ", ,'.' ,.. . ,' '-.-,,.a-, , %;., ',. a-,
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< . (20)

In the same way, we can take 81 and 82 such that

j n < (21)

By (17), (18), (20) and (21), we have

rP{qnlSup if.(x)- f(x)J > 11 < =.

- By Borel-Cantelli's lemma,

lim SupqnSup ifn(x) f(x)l} < 1 a.s. (22)

Fix el, 82 , and take 2b, = C3 (kln)11(d+). Fix CBc = {x: f(x) < V n}. With

small C3 we have

,.(xbn) = x  df(t)dt

I< (2bn )df(x) + C2(2b)d+X

" k -1 -d Ccd+Xk -d3 + C < k/2n < k/n.
i~8  3  C2C 3

Taking r = X/(d+x) in Lemma 3, we can assert with probability one that, for n large

enough, the inequality

',; un(X,b n) < ;(x~bn ) + 2C I(k/n)(+Xld)

< k/2n + 2C(k/n) (d+2x)/(d+X) < k/n

holds uniformly for xB By definition, for xcBn ,

,

--. . p:.: '&2'm oS - &°i~. L :~:k&cc
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an (x) >b = C3 (k/n)l/
(d+ )

fn(X) > C4(kn)X
' (d+ )

It follows that

lim Sup{(n/k)X/(d+X)Su pfnX - f(x)l < c4 a.s. (23)

Theorem 2 is proved in view of (22) and (23).
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